Quellen zum Lesen und Nachlesen
Studien:
[1] Lee, Y. T. et al. Risk of psychiatric disorders following irritable bowel syndrome: A nationwide population- based cohort study. PLoS One 10, (2015)
[2] Quigley, E. M. M. Changing face of irritable bowel syndrome. World Journal of Gastroenterology vol. 12 1–5 (2006)
[3] Quigley, E. M. M., Bytzer, P., Jones, R. & Mearin, F. Irritable bowel syndrome: The burden and unmet needs in Europe. Digestive and Liver Disease vol. 38 717–723 (2006)
[4] Qin, H. Y., Cheng, C. W., Tang, X. D. & Bian, Z. X. Impact of psychological stress on irritable bowel syndrome. World J. Gastroenterol. 20, 14126–14131 (2014)
[5] Moloney, R. D. et al. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci. Ther. 22, 102–117 (2016)
[6] Sibelli, A. et al. A systematic review with meta-analysis of the role of anxiety and depression in irritable bowel syndrome onset. Psychol. Med. 46, (2016)
[7] O’Mahony, S. M., Clarke, G., Dinan, T. G. & Cryan, J. F. Irritable Bowel Syndrome and Stress-Related Psychiatric Co-morbidities: Focus on Early Life Stress. in (2017). doi:10.1007/164_2016_128
[8] Zamani, M., Alizadeh-Tabari, S. & Zamani, V. Systematic review with meta-analysis: the prevalence of anxiety and depression in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 50, (2019)
[9] Fond, G. et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 264, (2014)
[10] Lee, C. et al. The Increased Level of Depression and Anxiety in Irritable Bowel Syndrome Patients Compared with Healthy Controls: Systematic Review and Meta-analysis. J. Neurogastroenterol. Motil. 23, (2017)
[11] Fadai, F., Farzaneh, N., Ghobakhlou, M., Moghimi-Dehkordi, B. & Naderi, N. Evaluation of psychological aspects among subtypes of irritable bowel syndrome. Indian J. Psychol. Med. 34, 144–148 (2012)
[12] Hausteiner-Wiehle, C. & Henningsen, P. Irritable bowel syndrome: Relations with functional, mental, and somatoform disorders. World J. Gastroenterol. 20, 6024–6030 (2014)
[13] Zhang, Q. E. et al. Depressive symptoms in patients with irritable bowel syndrome: A meta-analysis of comparative studies. Int. J. Biol. Sci. 14, 1504–1512 (2018)
[14] Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 6, (2018)
[15] Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, (2019)
[16] The Integrative Human Microbiome Project. Nature 569, (2019)
[17] Zhang, Y.-J. et al. Impacts of Gut Bacteria on Human Health and Diseases. Int. J. Mol. Sci. 16, (2015)
[18] Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, (2013)
[19] Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, (2019)
[20] Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Medicine vol. 8 1–11 (2016)
[21] Mishima, Y. & Sartor, R. B. Manipulating resident microbiota to enhance regulatory immune function to treat inflammatory bowel diseases. J. Gastroenterol. 55, (2020)
[22] Holtmann, G. J., Ford, A. C. & Talley, N. J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol. 1, (2016)
[23] Cryan, J. F. et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 99, (2019)
[24] Drago, L., Valentina, C. & Fabio, P. Gut microbiota, dysbiosis and colon lavage. Dig. Liver Dis. 51, (2019)
[25] Simpson, C. A., Mu, A., Haslam, N., Schwartz, O. S. & Simmons, J. G. Feeling down? A systematic review of the gut microbiota in anxiety/depression and irritable bowel syndrome. J. Affect. Disord. 266, (2020)
[26] Rodiño-Janeiro, B. K., Vicario, M., Alonso-Cotoner, C., Pascua-García, R. & Santos, J. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies. Adv. Ther. 35, (2018)
[27] Duan, R., Zhu, S., Wang, B. & Duan, L. Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome Based on 16S rRNA-Targeted Sequencing: A Systematic Review. Clin. Transl. Gastroenterol. 10, (2019)
[28] Wang, L. et al. Gut Microbial Dysbiosis in the Irritable Bowel Syndrome: A Systematic Review and Meta- Analysis of Case-Control Studies. J. Acad. Nutr. Diet. 120, (2020)
[29] Pittayanon, R. et al. Gut Microbiota in Patients With Irritable Bowel Syndrome—A Systematic Review. Gastroenterology 157, (2019)
[30] Takakura, W. & Pimentel, M. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome – An Update. Front. Psychiatry 11, (2020)
[31] Shah, A. et al. Small Intestinal Bacterial Overgrowth in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis of Case-Control Studies. Am. J. Gastroenterol. 115, (2020)
[32] Jeffery, I. B. et al. Differences in Fecal Microbiomes and Metabolomes of People With vs Without Irritable Bowel Syndrome and Bile Acid Malabsorption. Gastroenterology 158, 1016-1028.e8 (2020)
[33] Gupta, A., Osadchiy, V. & Mayer, E. A. Brain–gut–microbiome interactions in obesity and food addiction. Nat. Rev. Gastroenterol. Hepatol. 17, (2020)
[34] Zhu, X. et al. Microbiota-gut-brain axis and the central nervous system. Oncotarget 8, 53829–53838 (2017)
[35] Bruta, K., Vanshika, Bhasin, K. & Bhawana. The role of serotonin and diet in the prevalence of irritable bowel syndrome: a systematic review. Transl. Med. Commun. 6, 1–9 (2021)
[36] Mishima, Y. & Ishihara, S. Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. Int. J. Mol. Sci. 21, (2020)
[37] van Thiel, I. A. M., Botschuijver, S., de Jonge, W. J. & Seppen, J. Painful interactions: Microbial compounds and visceral pain. Biochim. Biophys. Acta - Mol. Basis Dis. 1866, (2020)
[38] Lomax, A. E., Pradhananga, S., Sessenwein, J. L. & O’Malley, D. Bacterial modulation of visceral sensation: mediators and mechanisms. Am. J. Physiol. Liver Physiol. 317, (2019)
[39] Barcik, W., Wawrzyniak, M., Akdis, C. A. & O’Mahony, L. Immune regulation by histamine and histamine- secreting bacteria. Current Opinion in Immunology vol. 48 108–113 (2017)
[40] Fabisiak, A., Włodarczyk, J., Fabisiak, N., Storr, M. & Fichna, J. Targeting Histamine Receptors in Irritable Bowel Syndrome: A Critical Appraisal. J. Neurogastroenterol. Motil. 23, (2017)
[41] Potts, R. A. et al. Mast cells and histamine alter intestinal permeability during malaria parasite infection. Immunobiology 221, (2016)
[42] Barcik, W. et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy 74, (2019)
[43] Landete, J. M., De Las Rivas, B., Marcobal, A. & Muñoz, R. Updated Molecular Knowledge about Histamine Biosynthesis by Bacteria. Crit. Rev. Food Sci. Nutr. 48, (2008)
[44] Cremon, C. et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am. J. Gastroenterol. 106, 1290–1298 (2011)
[45] Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 20, (2013)
[46] Roshchina, V. V. Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. in Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health 17–52 (Springer New York, 2010). doi:10.1007/978-1-4419-5576-0_2
[47] Asano, Y. et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Liver Physiol. 303, (2012)
[48] Özoğul, F. Production of biogenic amines by Morganella morganii, Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur. Food Res. Technol. 219, (2004)
[49] ÖZOĞUL, F., KULEY, E., ÖZOĞUL, Y. & ÖZOĞUL, İ. The Function of Lactic Acid Bacteria on Biogenic Amines Production by Food-Borne Pathogens in Arginine Decarboxylase Broth. Food Sci. Technol. Res. 18, (2012)
[50] Clarke, G. et al. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol. 28, (2014)
[51] Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015)
[52] Tada, Y. et al. Downregulation of serotonin reuptake transporter gene expression in healing colonic mucosa in presence of remaining low-grade inflammation in ulcerative colitis. J. Gastroenterol. Hepatol. 31, (2016)
[53] Jin, D. C. et al. Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome. World Journal of Gastroenterology vol. 22 8137–8148 (2016)
[54] Keszthelyi, D. et al. Decreased levels of kynurenic acid in the intestinal mucosa of IBS patients: Relation to serotonin and psychological state. J. Psychosom. Res. 74, (2013)
[55] de Leon, A. S. & Tadi, P. Biochemistry, Gamma Aminobutyric Acid. StatPearls (StatPearls Publishing, 2020).
[56] Barrett, E., Ross, R. P., O’Toole, P. W., Fitzgerald, G. F. & Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, (2012)
[57] Aggarwal, S., Ahuja, V. & Paul, J. Dysregulation of GABAergic signalling contributes in the pathogenesis of diarrheapredominant irritable bowel syndrome. J. Neurogastroenterol. Motil. 24, 422–430 (2018)
[58] Pokusaeva, K. et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 29, (2017)
[59] Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, (2016)
[60] James, S. C., Fraser, K., Young, W., McNabb, W. C. & Roy, N. C. Gut microbial metabolites and biochemical pathways involved in irritable bowel syndrome: Effects of diet and nutrition on the microbiome. Journal of Nutrition vol. 150 1012–1021 (2020)
[61] Kennedy, P. J., Cryan, J. F., Dinan, T. G. & Clarke, G. Kynurenine pathway metabolism and the microbiota-gut- brain axis. Neuropharmacology vol. 112 399–412 (2017)
[62] Keszthelyi, D., Troost, F. J. & Masclee, A. A. M. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterology and Motility vol. 21 1239–1249 (2009)
[63] Li, P. et al. Characterization of kynurenine pathway in patients with diarrhea-predominant irritable bowel syndrome. Eur. J. Histochem. 64, 14–21 (2020)
[64] Wang, J. et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021–22028 (2006)
[65] Gao, J. et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 8, (2018)
[66] Metidji, A. et al. The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity. Immunity 49, 353-362.e5 (2018)
[67] Bock, K. W. Aryl hydrocarbon receptor (AHR) functions: Balancing opposing processes including inflammatory reactions. Biochemical Pharmacology vol. 178 (2020)
[68] Pernomian, L., Duarte-Silva, M. & de Barros Cardoso, C. R. The Aryl Hydrocarbon Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation: Insights from an Immune and Bacteria Sensor Receptor. Clin. Rev. Allergy Immunol. 59, (2020)
[69] Tan, J. et al. The Role of Short-Chain Fatty Acids in Health and Disease. in (2014). doi:10.1016/B978-0-12- 800100-4.00003-9
[70] Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota– gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, (2019)
[71] Corrêa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T. & Vinolo, M. A. R. Regulation of immune cell function by short-chain fatty acids. Clinical and Translational Immunology vol. 5 e73 (2016)
[72] Fakhoury, H. M. A. et al. Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J. Steroid Biochem. Mol. Biol. 200, (2020)
[73] Clark, A. & Mach, N. Role of Vitamin D in the Hygiene Hypothesis: The Interplay between Vitamin D, Vitamin D Receptors, Gut Microbiota, and Immune Response. Front. Immunol. 7, (2016)
[74] Bruewer, M., Samarin, S. & Nusrat, A. Inflammatory bowel disease and the apical junctional complex. in Annals of the New York Academy of Sciences vol. 1072 242–252 (Blackwell Publishing Inc., 2006).
[75] Hewison, M. Antibacterial effects of vitamin D. Nat. Rev. Endocrinol. 7, (2011)
[76] El Amrousy, D., Hassan, S., El Ashry, H., Yousef, M. & Hodeib, H. Vitamin D supplementation in adolescents with irritable bowel syndrome: Is it useful? A randomized controlled trial. Saudi J. Gastroenterol. 24, 109–114 (2018)
[77] Cellini, B. et al. Pyridoxal 5′-Phosphate-Dependent Enzymes at the Crossroads of Host–Microbe Tryptophan Metabolism. Int. J. Mol. Sci. 21, (2020)
[78] Rosenberg, J., Ischebeck, T. & Commichau, F. M. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnology Advances vol. 35 31–40 (2017)
[79] Huang, S.-C., Wei, J. C.-C., Wu, D. J. & Huang, Y.-C. Vitamin B6 supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis. Eur. J. Clin. Nutr. 64, (2010)
[80] Ligaarden, S. C. & Farup, P. G. Low intake of vitamin B6 is associated with irritable bowel syndrome symptoms. Nutr. Res. 31, (2011)
[81] Wahlström, A., Sayin, S. I., Marschall, H. U. & Bäckhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism vol. 24 41–50 (2016)
[82] Ding, L., Yang, L., Wang, Z. & Huang, W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm. Sin. B 5, (2015)
[83] Walters, J. R. F. Bile acid diarrhoea and FGF19: new views on diagnosis, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 11, (2014)
[84] Oduyebo, I. & Camilleri, M. Bile acid disease: The emerging epidemic. Current Opinion in Gastroenterology vol. 33 189–195 (2017)
[85] Peleman, C. et al. Colonic Transit and Bile Acid Synthesis or Excretion in Patients With Irritable Bowel Syndrome–Diarrhea Without Bile Acid Malabsorption. Clin. Gastroenterol. Hepatol. 15, 720-727.e1 (2017)
[86] Cangemi, D. J. & Lacy, B. E. Management of irritable bowel syndrome with diarrhea: a review of nonpharmacological and pharmacological interventions. Therap. Adv. Gastroenterol. 12, (2019)
© 2023 Darmdialog®